

Connector Crack Analysis Elimination Of Crack In Connector Manufacturing Process

Narayanan.R, Neelamegam.B

SNS College of Engineering, Coimbatore, Tamilnadu. SNS College of Engineering, Coimbatore, Tamilnadu

Submitted: 01-05-2021	Revised: 09-05-2021	Accepted: 10-05-2021

ABSTRACT:LGB is a one of the leading automotive machined components and sub assemblies manufacturer in South India. They manufactures Fuel injection pump components for major OEM & Tier1 Industries, The engineers do the design and maintain the tooling utilized in the manufacturing lines.

In this company Raw material Bar are cut with cutting machine and machining in the CNC turn mill centre with three stages. After that, parts are Heat treated and vibro cleaned and black coated and cleaned with ultrasonic machine and send to customer.

They have some problems in production in their connector production line some of the parts having surface crack in connector neck surface area, due to this they doing 100% of crack detection (MPI) both in process and final inspection, due to this their productivity affected and not able to meet the customer target quantities .To solve this issues we analysis the each process and which process and what parameters create the crack in connector neck area

OBJECTIVIES:

The main objective is to study the connector manufacturing process and identify the factors and parameters to create the crack in the connector neck area and solve the issues in systematic problem solving approach and produce the crack free parts..

I. INTRODUCTION

The Automotive industry is one of the key sectors of the Indian economy. In an attempt to

promote market growth, the Ministry of Finance had announced a cut in the corporate tax rate in 2019. This revision in corporate taxes is anticipated to attract FDI in the country's manufacturing sector, which is expected to help the automotive industry marginally. Furthermore, Government initiatives like Make in India and Automotive Mission Plan 2026 have boosted the Indian automotive sector. The Automotive Mission Plan 2026 is a collective vision of India's automotive industry and the government that aims to make the Indian automotive industry the driving factor of the Make in India initiative. So we need to produce defect free product to our customer, Also if its any dimensional defects can be easily identified by customer incoming line and assembly line, But surface and internal part cracks not able to identify with normal instruments . so we need to take the precaution to avoid this kind of issues in the parts with effective process design and manufacturing methods.

II.LITERATURE REVIEW

- Edward Igelegbai (2015) et al., investigated mechanical properties and microstructure of brass alloys. He stated that, increases of zinc in brass leads to improve hardness, yield strength, tensile strength and ductility of brass alloy.
- Prabhakar Purushothaman (2014) et al., discussed hertz contact theory validation. He concluded that, the stress value changes with contact area. If higher the contact area the stress generated will be reduced.

III.CONNECTOR PROCESS FLOW:

IV.EXPLANATION FOR POTENTIAL CAUSE OF CRACK

- 1. Raw Material :
- Presence of pin holes, porous and fold / lap
- > Uncontrolled non-metallic inclusions
- 2. CNC Machining :
- Stress induced in weak area when turning operation
- 3. Heat Treatment :
- High Austenising temperature
- Selection of quenching medium
- > Delay in tempering
- Improper quenching

V.DEFECT PART ANALYSIS

Defect part analysed both dimensionally and visually found below observations,

VISUAL INSPECTION OBSERVATIONS:

- Crack formed at the mid portion of radius R2.
- No other damages observed
- Blackening happened the cracked area, hence crack was generated before blackening operation

VI.DIMENSIONAL INSPECTION OBSERVATIONS

- > No dimensional deviation found
- > Profile formation and roughness are found normal

Trial #	Current method	Simulation method	No. of sample used	Result	Visualisation
Т1	Part is clamped in soft jaws, the effective Jaws clamping length 15mm in CNC 2 nd operation	Lesser Clamping area in Jaws (Jaws length 9.5mm)	10 nos	No Crack found in MPI test (in soft stage and HT stage)	
T2	Turning with coolant in CNC 2 nd operation	Dry Cut (Without Coolant)	10 nos	No Crack found in MPI test (in soft stage and HT stage)	
Т3	Merging of ø22 spear and R2.5 at 3.25mm height from the part center in CNC 2 nd operation	and R2.5 at 4.15 mm height from the part center in CNC 2 nd operation	10 nos	No Crack found in MPI test (in soft stage and HT stage)	
T4	Feed rate for OD Roughing 0.25mm/rev in CNC 2 nd operation	Increased 20% Additional Feed (Feed rate – 0.3) manually with use of feed rate knob	10 nos	No Crack found in MPI test (in soft stage and HT stage)	

VII.CNC MACHINING SIMULATION TRAILS OBSERVATIONS

VIII.FINITE ELEMENT ANALYSIS

FEA (Finite Element Analysis) done for both Final stage part and CNC Turning stage parts,

IX.FEA OBSERVATIONS:

The R2.5 is the potential area tends to prone for crack since the cross-section area is very less in CNC 2^{nd} operation.

So during CNC operation due to the high stress in radius 2.5 area crack generation will be happen.

X.ROOT CAUSE ANALYSIS

No.	bhikava Category	lshikawa Cause hen (Possible Cause)	Description	Relevancy for consideration <u>prelevant</u> for further not cause analysis, or to be <u>excluded</u> from analysis)	Reason for excluding
1	Nan -	Excluded Cause	Unskilled inspector used in NPI	excluded	Level 2 certified inspectors used for MPI.
2	Madine	Excluded Cause	High depth of cut in rough facing	evcluded	In simulation trials, no crack formed, but insert go
		Excluded Cause	High depth of cut in rough turning	excluded	In simulation bials, no crack formed
		Excluded Cause	Turning without costant	excluded	In simulation brials, no crack formed
		EncludedCause	Higherfeed rate for rough turning	excluded	In simulation brials, no crack formed
		ExcludedCause	irset dip of	excluded	In simulation brials, no crack formed
1	Kessurenert -	Possible cause	Lesservisibilityin IAP test	Relevant	Visibility is more for XPI after blackening process than be
		EncludedCause	Crack formation after NPI test	excluded	Blackening happenedinside cradi
4	Environment	Evoluded Cause	Povertailure	excluded	Nachinesare connected with UPS
5	Haterial _	Possible cause	Stress induces during turning leads crack	Relevant	FEA shows stress induced at lesser US at R2.5 in CMC 2
		ExcludedCause	Precradulin raw material	excluded	No abnormality found in microstructure analy
		EncludedCause	Quench crack in HT	excluded	No abnormality found in microstructure analy
		EncludedCause	High hardnes	excluded	Hardness kundwith in specification
6	Method	ExcludedCause	Lesser damping area in CNC turning	excluded	In simulation trials, no cradi formed
		Excluded Cause	Excess runaut	excluded	In simulation trials, no cradi formed
		ExcludedCause	MPI procedure not defined focused area	excluded	Verified procedure bund/0K

XI.WHY - WHY ANALYSIS

Analysis done for occurrence and Non detection of Defective parts due to stress induced in lesser cross sectional area the crack initiation and

after HT process the part colour change to gray and crack marks and turning feed line very similar so missing possibility in MPI (Magnetic particle inspection)

XII.SIMULATION RESULTS & CONCULUSION:

- No deviation observed in raw material and HT process metallurgic ally
- Based on various simulation trials we could not be able to re-generate the defect.
- Hence the defective was not formed in the regular manufacturing process, unless otherwise an external force applied as shown in slide # 15
- Based on Finite Element Analysis (FEA) the R2.5 is the potential area tends to prone for

crack since the cross-section area is very less in CNC 2^{nd} operation.

XIII.CORRECTIVE ACTION:

- Cross sectional area will be increased from 6mm to 20 mm by forming half radius of R22 Spear in CNC 1st operation and another half in CNC 2nd Operation
- MPI Test will be conducted after blackening process to improve the visibility because of black in nature

REFERANCE

- Anderson, 2001 "Fracture Mechanics"
- [1]. Borek, 1998 "Fracture mechanics in [2]. engineering practice"
- Sutton, et. al. 1999 "Development and [3]. application of crack tip opening displacement-based mixed mode fracture criterion"